DRAFT - DO NOT REPRODUCE

Table 6 Draft MicroVac Analytical Results Fruitland Magnesium Fire

			I	Fruitland Magnesiu Maywood, Los Angeles Cou						
	Home:	Ex. 6 - Personal Privacy								
	Field Sample ID:	MWF-VAC-001	MWF-VAC-002	MWF-VAC-003	MWF-VAC-005	MWF-VAC-201	MWF-VAC-203	MWF-VAC-204		
	Sample Date:	6/26/2016	6/26/2016	6/30/2016	7/1/2016	6/28/2016	6/28/2016	6/28/2016		
	Laboratory Job									
	Number: Adult / Child /	82856	82856	82950	82949	82873	82873	82873		
	Duplicate:									
Parameters	Units									
Ietals / NIOSH-7303	B(M)		<u> </u>				<u> </u>			
luminum	μg/m ²	92.8	57	31.8 *	154.6	8.46 *	93.2 *	35.4 *		
ntimony	μg/m ²	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075		
rsenic	μg/m ²	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075		
arium	μg/m ²	12	7.78	1.7	14.22	6.02	10.6	5.54		
ervllium	2	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075		
admium		ND<0.075		ND<0.075	ND<0.075			ID<0.075		
alcium	μg/m²	19.4	15.6	ND<0.075 *	800	30 *	346 *	112 *		
hromium	$\mu g/m^2$	64	7.6	1.76	1.92	ND<0.075	ND<0.075	ND<0.075		
obalt	$\mu g/m^2$	075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.07:	ND<0.075		
opper	$\mu g/m^2$		2.06	ND<0.07	3.54	9.94	ND<0.07:	ND<0.075		
on	$\mu g/m^2$			31.6	246		138.8	45.2		
ead	$\mu g/m^2$			ND<0	4.54	110 0.070	ND<0.075	ND<0.075		
agnesium	μg/m ²		622	4	60	41.2 *	606 *	316 *		
anganese	$\mu g/m^2$.075	ND<0.075	ND		ND<0.075	ND<0.075	ND<0.075		
olvbdenum	$\mu g/m^2$	0.075	ND<0.075	NI 5	75	ND<0.075	ND<0.07:	ND<0.075		
ickel	$\mu g/m^2$	<0.075	ND<0.075	N 75	NI 5	ND<0.075	ND<0.075	ND<0.075		
otassium		ND<0.075	ND<0.075			ND<0.075	78	23.4		
lenium	μg/m	ND<0.075	ND<0.075	0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075		
odium	μg/m ²	ND<0.075	ND<0.075	ND<0.075 *	ND<0.075	92	ND<0.075	130		
nallium	μg/m ²	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075		
anadium	μg/m ²	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075		
inc	μg/m ²	20.4	22.8	4.64	19.66	5.86	19.7	8.28		

 $\mu g/m^2 = microgram per square meter$

DRAFT - DO NOT REPRODUCE

ED_001052_00001579-00001

Notes:

Bold results exceed applicable limits for characteristic hazardous wastes.

ND<X = constituents(s) not detected at or above method detection limit

* = Trace level of target analyte was detected in the associated field blank and the result was adjusted by field blank concentration

			I	Fruitland Magnesii Maywood, Los Angeles Cou							
	Ex. 6 - Personal Privacy										
	Field Sample ID:	MWF-VAC-215	MWF-VAC-216	MWF-VAC-217	MWF-VAC-218	MWF-VAC-219	MWF-VAC-220	MWF-VAC-221			
	Sample Date:	6/30/2016	6/30/2016	6/30/2016	6/30/2016	6/30/2016	6/30/2016	6/30/2016			
	Laboratory Job										
	Number: Adult / Child /	82950	82950	82950	82950	82950	82950	82950			
	Duplicate:										
Parameters	Units										
Ietals / NIOSH-7303			<u> </u>	<u> </u>		<u> </u>	<u> </u>				
Aluminum	$\mu g/m^2$	ND<0.075 *	98.6 *	5.9 *	ND<0.075 *	8 *	76 *	1.64 *			
antimony	μg/m ²	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075			
rsenic	μg/m ²	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075			
arium	μg/m ²	ND<0.075	10.86	2.82	ND<0.075	ND<0.075	82.8	16.92			
ervllium	, 2	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075			
admium		ND<0.075		ND<0.075	ND<0.075			ID<0.075			
alcium	$\mu g/m^2$	<0.075 *	260 *	31.6 *	ND<0.075 *	ND<0.075 *	1134 *	410 *			
hromium	$\mu g/m^2$	66	1.86	2.16	ND<0.075	1.92	2.82	2.32			
obalt	$\mu g/m^2$	075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075			
opper	$\mu g/m^2$	1 075	2.62	ND<0.07	ND<0.075	ND<0.075	12.28	3.76			
on	$\mu g/m^2$)75		ND<0.07	D<0.075		410	248			
ead	$\mu g/m^2$	N (75		ND<0.	< 0.075	1.05 -0.075	3.66	2.36			
lagnesium	$\mu g/m^2$		810	129	46	29.4	1286	496			
langanese	$\mu g/m^2$.075	ND<0.075	ND	075	ND<0.075	15.9	6.76			
lolybdenum	$\mu g/m^2$	0.075	ND<0.075	NV 5	N 75	ND<0.075	ND<0.075	ND<0.075			
ickel	$\mu g/m^2$	0<0.075	ND<0.075	N 75	NA 5	ND<0.075	ND<0.075	ND<0.075			
otassium		63.4	40.4	.075	ND	11.36	147	145.6			
elenium	μg/m	ND<0.075	ND<0.075	0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075			
odium	μg/m ²	ND<0.075 *	27.4 *	19.4 *	ND<0.075 *	21.4 *	ND<0.075	ND<0.075			
hallium	μg/m ²	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075			
anadium	$\mu g/m^2$	ND<0.075	ND<0.075	ND<0.075	ND<0.075	2.56	1.76	ND<0.075			
inc	μg/m ²	ND<0.075	12.84	ND<0.075	ND<0.075	3,48	70.4	23			

Notes:
Bold results exceed applicable limits for chara
ND<X = constituents(s) not detected at or abo
* = Trace level of target analyte was detected in $\mu g/m^2 = microgram \ per \ square \ meter$

DRAFT - DO NOT REPRODUCE

			N	Maywood, Los Angeles Co						
	Home:	Ex. 6 - Personal Privacy								
	Field Sample ID:	MWF-VAC-222	MWF-VAC-223	MWF-VAC-300	MWF-VAC-301	MWF-VAC-302	MWF-VAC-303	MWF-VAC-304		
	Sample Date:	6/30/2016	6/30/2016	6/30/2016	6/30/2016	7/1/2016	7/1/2016	7/1/2016		
	Laboratory Job	0.0.50	0.00.00	0.000	0.0.50	0.00	0.0.40	0.0.10		
	Number: Adult / Child /	82950	82950	82950	82950	82949	82949	82949		
	Duplicate:									
Parameters	Units									
letals / NIOSH-7303	(M)		•		•					
luminum	μg/m ²	127.6 *	133 *	146 *	274 *	56	14.5	202		
Intimony	μg/m²	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075		
rsenic	μg/m ²	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075		
arium	μg/m ²	9.96	5.56	8.16	7.82	ND<0.075	ND<0.075	8.76		
eryllium	2	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075		
admium		ND<0.075		ND<0.075	ND<0.075			ID<0.075		
alcium	$\mu g/m^2$	644 *	438 *	468 *	788 *	346	88.6	1056		
hromium	$\mu g/m^2$	26	2.36	2.42	2.42	ND<0.075	ND<0.075	2.36		
obalt	$\mu g/m^2$	075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075		
opper	μg/m ²		2.94	3.54	3.26	2.8	ND<0.075	4.88		
on	$\mu g/m^2$			238	416		ND<0.075	344		
ead	$\mu g/m^2$			1.68	3.98	1.0	ND<0.075	2.48		
agnesium	$\mu g/m^2$		148	21	5.6	382	11.96	191		
anganese	$\mu g/m^2$		2.06	7	To the second se	ND<0.075	ND<0.075	7.3		
olybdenum	μg/m ²	0.075	ND<0.075	NI 5	75	ND<0.075	ND<0.075	ND<0.075		
ckel	$\mu g/m^2$	< 0.075	ND<0.075	N 75	NI 5	ND<0.075	ND<0.075	ND<0.075		
otassium		78	130.6	.6		50	ND<0.075	218		
lenium	μg/m	ND<0.075	ND<0.075	ND~0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075		
dium	μg/m ²	ND<0.075	ND<0.075 *	ND<0.075 *	ND<0.075	124.6	78.6	63.6		
nallium	μg/m ²	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075		
anadium	μg/m²	ND<0.075	1.52	ND<0.075	13.76	ND<0.075	ND<0.075	ND<0.075		
inc	μg/m²	18.18	18.48	16.38	22.4	6.2	ND<0.075	25.8		

Notes:
Bold results exceed applicable limits for chara
ND<X = constituents(s) not detected at or abo
* = Trace level of target analyte was detected in $\mu g/m^2 = microgram per square meter$

DRAFT - DO NOT REPRODUCE

				Maywood, Los Angeles Cou	ınty, California						
	Home:	Ex. 6 - Personal Privacy									
	Field Sample ID:	MWF-VAC-305	MWF-VAC-306	MWF-VAC-307	MWF-VAC-308	MWF-VAC-309	MWF-VAC-310	MWF-VAC-311			
	Sample Date:	7/1/2016	7/1/2016	7/1/2016	7/1/2016	7/1/2016	7/1/2016	7/1/2016			
	Laboratory Job	000.40	00010	000.40		0.0.0.4	20074	0-0-4			
	Number: Adult / Child /	82949	82949	82949	82954	82954	82954	82954			
	Duplicate:										
Parameters	Units										
etals / NIOSH-7303	(M)		•	•							
uminum	μg/m ²	7	218	4.06	15.68	21.2	13.62	19.94			
timony	μg/m ²	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075			
senic	μg/m ²	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075			
rium	μg/m ²	ND<0.075	8.36	ND<0.075	ND<0.075	2.16	ND<0.075	ND<0.075			
ryllium	2	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND-0.075	ND<0.075			
dmium		ND<0.075		ND<0.075	ND<0.075			ID<0.075			
lcium	$\mu g/m^2$	65.6	596	48	95	121	103	147			
romium	$\mu g/m^2$	0.075	2.46	ND<0.075	1.68	ND<0.075	1.98	1.9			
balt	$\mu g/m^2$	075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.07:	ND<0.075			
pper	$\mu g/m^2$	1 075	3.72	ND<0.07	ND<0.075	2.1	ND<0.075	ND<0.075			
n	$\mu g/m^2$	1 (75		ND<0.07	25.4		30.4	46.4			
nd	$\mu g/m^2$	1 075		ND<0.	< 0.075	110.0.010	ND<0.075	ND<0.075			
ignesium	$\mu g/m^2$		238	8.5	5.8	64.8	43.6	36			
inganese	$\mu g/m^2$.075	9.1	ND	075	ND<0.075	ND<0.075	ND<0.075			
lybdenum	μg/m ²	0.075	ND<0.075	NI 5	N 75	ND<0.075	ND<0.07:	ND<0.075			
ckel	$\mu g/m^2$	0<0.075	ND<0.075	N 75	NI 5	ND<0.075	ND<0.075	ND<0.075			
assium		ND<0.075	322	.075		ND<0.075	5.74	48.8			
enium	μg/m	ND<0.075	ND<0.075	ND=0.075	ND<0.073	ND<0.075	ND<0.075	ND<0.075			
lium	μg/m ²	63.6	ND<0.075	48	81.4	70.4	144.4	127.6			
allium	μg/m ²	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075			
nadium	μg/m ²	ND<0.075	2	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075			
nc	μg/m ²	ND<0.075	20,2	ND<0,075	2.8	4.7	3.44	4.5			

Notes:
Bold results exceed applicable limits for chara
ND<X = constituents(s) not detected at or abo
* = Trace level of target analyte was detected in $\mu g/m^2 = microgram per square meter$

DRAFT - DO NOT REPRODUCE

			I	Maywood, Los Angeles Cou				
	Home:							
	Field Sample ID:	MWF-VAC-312	MWF-VAC-313	MWF-VAC-315	MWF-VAC-316	MWF-VAC-317	MWF-VAC-318	MWF-VAC-319
	Sample Date: Laboratory Job	7/2/2016	7/2/2016	7/2/2016	7/2/2016	7/2/2016	7/2/2016	7/2/2016
	Number:	83087	83087	83087	83087	83087	83087	83087
	Adult / Child /	00007	00007	00007	00007	32007	00007	00007
	Duplicate:							
Parameters	Units							
Metals / NIOSH-7303(
Aluminum	μg/m ²	26.4	200	7.74	83	428	12.46	4.5
Antimony	μg/m ²	ND<0.075	8.28	ND<0.075	2.64	11.56	ND<0.075	ND<0.075
Arsenic	μg/m²	ND<0.075	ND<0.075	ND<0.075	ND<0.075	3.02	ND<0.075	ND<0.075
Barium	μg/m ²	ND<0.075	390	ND<0.075	49.6	155.6	ND<0.075	ND<0.075
Beryllium	, 2	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075
Cadmium		ND<0.075		ND<0.075	ND<0.075			ID<0.075
Calcium	$\mu g/m^2$	89	3400	34	1576	17360	86.4	38.4
Chromium	$\mu g/m^2$	0.075	191.2	ND<0.075	2.74	9.2	ND<0.075	ND<0.075
Cobalt	μg/m ²	075	ND<0.075	ND<0.075	ND<0.075	2.66	ND<0.075	ND<0.075
Copper	$\mu g/m^2$	i 075	262	ND<0.07	19.72	89.6	ND<0.075	ND<0.075
Iron	$\mu g/m^2$			6	856	1	26	9
Lead	$\mu g/m^2$	1 075		ND<0.	8.74	ÿ.	ND<0.075	ND<0.075
Magnesium	$\mu g/m^2$		1558	15	22	1820	12.5	6.46
Manganese	$\mu g/m^2$.075	46.4	ND	78	36.2	ND<0.075	ND<0.075
Molybdenum	$\mu g/m^2$	0.075	ND<0.075	NI 5	75	6.58	ND<0.075	ND<0.075
Nickel	$\mu g/m^2$	0<0.075	8.28	N 75		17.64	ND<0.075	ND<0.075
Potassium	· · · · · · · · · · · · · · · · · · ·	30.8	ND<0.075		ND-	176	14.5	ND<0.075
Selenium	μg/m	ND<0.075	ND<0.075	0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075
Sodium	μg/m ²	ND<0.075	128.4	37	128.4	244	80.6	41
Thallium	μg/m ²	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075
Vanadium	μg/m²	ND<0.075	2.46	ND<0.075	ND<0.075	7.36	ND<0.075	ND<0.075
Zinc	μg/m²	3	562	ND<0.075	126	488	ND<0.075	ND<0.075

Notes:
Bold results exceed applicable limits for chara
ND<X = constituents(s) not detected at or abo
* = Trace level of target analyte was detected in $\mu g/m^2 = microgram per square meter$

DRAFT - DO NOT REPRODUCE

			Maywood, Lo	s Angeles County, Californ	ia		
	Home: Field Sample ID:	MWF-VAC-320	MWF-VAC-321	MWF-VAC-322	MWF-VAC-323	Ex. 6 - Personal Privacy MWF-VAC-324	MWF-VAC-325
	Sample Date:	7/2/2016	7/2/2016	7/5/2016	7/5/2016	7/1/2016	7/5/2016
	Laboratory Job Number:	83087	83087	83087	83087	82954	83087
	Adult / Child / Duplicate:						
Parameters	Units						
Metals / NIOSH-7303(
Aluminum	μg/m ²	7	137.4	3.26	ND<0.075	154.8	224
Antimony	μg/m ²	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075
Arsenic	μg/m ²	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075
Barium	$\mu g/m^2$	ND<0.075	27.6	ND<0.075	ND<0.075	56.2	26.6
Berylliu	ug/m²	ND<0.075	ND<0.075	ND<0.075	ND-0.075	ND<0.075	ND<0.075
Cadmiu		N	0.075		NI	0.07	
Calciun	μв	N 075				6780	594
Chromi	μg/m³	N 075	N 75	> 0.	NI 5	7.6	3.5
Cobalt	$\mu g/m^2$	N 075	N 75	D<0.0	NI 5	ND<0.075	ND<0.075
Copper	$\mu g/m^2$	N 075		ND<0.07	NI 5	34.8	12.18
Iron	$\mu g/m^2$.88	ND<0.075	NI	1978	432
Lead	$\mu g/m^2$	Ŋ	11.84	ND<0.075	NI	29.4	7.74
Magnes	μg/m ²		2240			1704	218
Mangar	$\mu g/m^2$	N 075	6.9	110 0.010	NI 5	38	8.28
Molybd	μg/m²	N 075	2.075	ND<0.075	NI 5	ND<0.075	ND<0.075
Nickel		N 075	75	ND<0.075	NI 5	4.3	3.38
Potassii		N 075		ND<0.075	NI 5	1312	ND<0.075
Selenium	$\mu g/m^2$	N D~0. 075	ND<0.075	ND<0.075	ND <0.075	ND<0.075	ND<0.075
Sodium	μg/m²	30	93.4	32	11.5	98	ND<0.075
Thallium	μg/m²	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075	ND<0.075
Vanadium	μg/m²	ND<0.075	ND<0.075	ND<0.075	ND<0.075	4.14	ND<0.075
Zinc	$\mu g/m^2$	ND<0.075	19.14	ND<0.075	ND<0.075	199.4	60.8

DRAFT - DO NOT REPRODUCE

Notes:

Bold results exceed applicable limits for chara

ND<X = constituents(s) not detected at or abc

* = Trace level of target analyte was detected $\mu g/m^2 = microgram per square meter$